Identification of neuropeptides in mouse spinal cord using mass spectrometry

Karl Sköld³, Jie Su^{1,2}, Katalin Sandor¹, Camilla Svensson¹, Kim Kultima⁴

Department of Physiology and Pharmacology¹ and Neuroscience² Karolinska Institutet, Stockholm, Sweden ³Denator AB, Uppsala, Sweden ⁴Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden

Background

Neuropeptides and hormones are often difficult to detect and measure, often due to low levels, small size, and their rapid degradation. Previously combinations of heat stabilization, extraction and filtering of homogenate and detection using LCMS have been successfully used for the detection of 50-100 peptides / run. Despite the possibility to detect and measure a large number of peptides some peptides are not detected. In this study we have focused on method development, and have experimented on the extraction method to be able to detect more peptides and especially targeted galanin.

Heat Stabilization

Conductive heat stabilization has been used to rapidly cause loss of protein structure to render the degradative enzymes inactive. This method may be used on both fresh and frozen tissue samples without the use of hazardous chemical inhibition cocktails. Generally speaking, the samples are subjected to as little handling as possible.

Reduction of sample complexity

A. Post mortem time delay effect on the number of detected peptides in the hypothalamus of mouse (*P<0.05, ***P<0.001, ANOVA, t-test). B. LCMS 2D plot of heat stabilized hypothalamus of rat. C. I CMS 2D plot of snap frozen hypothalamus of rat

Workflow

Family

Somastostatin gene family

Thymosin beta family

SMS

TYB10

Somatostatin-1

Thymosin beta-10

Extraction of peptides from heat stabilized spinal cord

Family	Precursor	Peptide name	Peptide	Peptide modification
			sequence	
Bombesin/neuromedin-	GRP	Neuromedin-C	GSHWAVGHLM	Amid(C-term)
B/ranatensin family				
Bombesin/neuromedin- B/ranatensin family	NMB	Neuromedin-B	GNLWATGHFM	Amid(C-term)
Cerebellins	CBI N1	Cerebellin	SGSAKVAFSAIRSTNH	
Cerebellins	CBLN1	[des-Ser1]-cerebellin	GSAKVAFSAIRSTNH	
FARP (FMRFamide related peptide) family	NPFF	Neuropeptide SF	SPAFLFQPQRF	Amid(C-term)
Granins	7B2	C-terminal peptide	SVPHFSEEEKEAE	Phos(S6)
Granins	CMGA	WE-14	WSRMDQLAKELTAE	
Kinin and tensin gene family	TKN1	Substance P	RPKPQQFFGLM	Amid(C-term)
Kinin and tensin gene family	TKN1	Neurokinin A	HKTDSFVGLM	Amid(C-term)
Kinin and tensin gene family	TKN1	C-terminal-flanking peptide	ALNSVAYERSAMQNYE	
eurotensin family	NEUT	Neuromedin N	KIPYIL	
veurotensin family	NEUT	Neurotensin	QLYENKPRRPYIL	pGlu(Q1)
leurotensin family	NEUT	Tail peptide	GSYYY	
ImU family	NMU	Propeptide	STSFI	
lo-family neuropeptides	MCH	Neuropeptide-glutamic acid- isoleucine	EIGDEENSAKFPI	Amid(C-term)
lo-family neuropeptides	PCSK1	Big SAAS	ARPVKEPRSLSAASAPLVETST PLRL	
vo-family neuropeptides	PCSK1	KEP	ARPVKEP	
lo-family neuropeptides	PCSK1	Little SAAS	SLSAASAPLVETSTPLRL	
lo-family neuropeptides	PCSK1	Big LEN	LENPSPQAPARRLLPP	
Dpioid gene family	PDYN	Alpha-neoendorphin	YGGFLRKYPK	
Dpioid gene family	PDYN	Beta-neoendorphin	YGGFLRKYP	
Dpioid gene family	PDYN	Rimorphin	YGGFLRRQFKVVT	
Opioid gene family	PDYN/ PENK	Leu-enkephalin	YGGFL	
Dpioid gene family	PENK	Met-enkephalin	YGGEM	
Dpioid gene family	PENK	Met-enkephalin-Arg-Ser-Leu	YGGFMRSL	
Dpioid gene family	PENK	Propeptide	SPOLEDEAKELO	
Dpioid gene family	PENK	Propeptide	VGRPEWWMDYO	
Opioid gene family	PENK	Met-enkephalin-Arg-Phe	YGGFMRF	
Opioid gene family	PNOC	Nociceptin	EGGETGARKSARKLANO	
Opioid gene family	PNOC	Propentide	TIHONGNY	

AGCKNEEWKTETSC

TOEKNTLPTKETIEOEKRSEIS

ADKPDMGEIASFDKAKLKKTE Acet(K3)

Family	Precursor	Peptide name	Peptide sequence	Modification	Mr (calc)		
Calcitonin gene family	CALCA	Calcitonin gene-related peptide 1	SCNTATCVTHRLAGLLSRSGGVVKDNFVPTNVGSEAF	Amid(C-term)	3805.898		
Galanin gene family	GALA	Galanin	GWTLNSAGYLLGPHAIDNHRSFSDKHGLT	Amid(C-term)	3162.574		
NPY family	NPY	C-flanking peptide of NPY	SSPETLISDLLMKESTENAPRTRLEDPSMW		3432.653		
Opioid gene family	PENK	PENK(114-133)	MDELYPMEPEEEANGGEILA		2235.95		
No-family neuropeptides?	PCSK1	PEN-20	SVDQDLGPEVPPENVLGALL		2061.063		
No-family neuropeptides?	PCSK1	PEN	SVDQDLGPEVPPENVLGALLRV		2316.23		
Kinin and tensin gene	TKNK	Neurokinin-B	DMHDFFVGLM	Amid(C-term)	1209.53		

Vend diagram of identified peptides

LD: Lumbar dorsal part, CD: Cervical dorsal part, CV: Cervical ventral part, IV: Lumbar ventral part

Methods

Mice were deeply anesthetized with isoflurane and spinal cords collected by extrohydrusion. The spinal cord samples were immediately heat stabilized using the Stabilizor system (Denator AB, Gothenburg, Sweden) set at 95°C for 30-40 sec (Skold et al. 2007). After stabilization the dorsal and ventral parts of the cervical (C3-C8) and lumbar (L1-L6) enlargements were dissected under a dissecting microscope. Peptide extraction was performed using Peptide extraction Kit (Denator AB, Gothenburg, Sweden) according to the manufacturer's description. Spinal cords were transferred to lowretention Eppendorf tubes and suspended in pre-chilled extraction solution (7.5 µl 0.25% acetic acid/mg tissue) and homogenized by sonication (Vibra cell 750, Sonics & Materials Inc., Newtown, CT. USA) for 30 seconds (Svensson et al. 2003).

In order to investigate which peptides that are not extracted using mainly water, the extraction solution was replaced using 7.5 µl 0.25% acetic acid/mg tissue and 25% or 50% methanol or acetonitrile, respectively, utilizing ventral and lumbar dorsal horns. Five-microliter sample injections were made with an HTC-PAL autosampler (CTC Analytics AG, Zwingen, Switzerland) connected to an Agilent 1100 binary pump (Agilent Technologies, Palo Alto, CA, USA). The peptides were trapped on a precolumn (45 x 0.100 mm i.d.) and separated on a reversed phase column, 200 x 0.050 mm. Both columns are packed in-house with ReproSil-Pur C18-AQ 3 µm particles (Dr. Maisch GmbH. Ammerbuch. Germany). The nanoflow LC-MS/MS were performed on a hybrid LTQ FT-ICR mass spectrometer equipped with a 7T ICR magnet (LTQ FT, Thermo Electron, Bremen, Germany), The obtained MS/MS files were searched against a compilation of mouse precursors containing known neuropeptides and peptide hormones by using X! Tandem (Craig & Beavis 2004) and MASCOT Daemon (version 2.3, Matrix Science, London, UK),

Results

In the extraction utilizing mainly water and 0.25% acetic acid a total of 204 protein precursor derived peptides were identified in mouse spinal cord. Out of these 36 were determined to be previously identified fulllength neuropeptides. By extraction with organic solvents in mouse dorsal horns using acetonitrile or methanol in 25% or 50% concentrations, an additional seven previously identified full-length neuropeptides including galanin and an additional 16 protein precursor derived peptides were identified. Galanin was only detected using 50% methanol as extraction buffer. To conclude, we are able to measure galanin and up to 50 neuropeptides in spinal cord in one MS run. The method will be used to semi quantitatively compare neuropeptides between diseased / treated and control animals.

Conclusion

204 unique (neuro)peptides derived from prercursor-proteins (prohormones), 50 are only expressed in dorsal side, 36 full-length, previously known, neuropeptides, 118 "novel" peptides with typical neuropeptide cleavage sites